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USING “FAT TAILS” DISTRIBUTIONS FOR RISK MANAGEMENT

Value at Risk (VaR) is one of the most important indicators used in risk management. Typically the normal distribution is used for its calculation, but the actual distribution of securities’ returns has much more probability in its tails than the normal distribution. In this article we derive VaR formulas for the Student’s t and Laplace distributions. Using assets on the U.S. and Russian stock market, we show that using these “fat-tailed” distributions lead to a significant increase in quality of risk measurement comparing to the normal distribution.
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The problem. One of the key measures used in the modern risk management practice is the Value at Risk (VaR). It has been actively promoted by the leading professional association of the risk managers, Global Association of Risk Professionals (GARP), and also by the Basel Committee on Banking Supervision. It’s VaR that is recommended to measure market risks according to Basel II. A major drawback of VaR is its reliance on particular distribution of the financial asset’s returns — typically, the normal distribution is used, but according to numerous researches it’s inadequate for modeling the actual distribution because of the “fat tails” problem. Hence looking for alternate distributions that are doing better job for modeling the “tails” is a very important practical problem nowadays.
Analysis of prior research. One of the most fundamental works in the area of risk management and VaR usage was accomplished by Jorion [1]. The researcher shows the comprehensiveness of VaR as a measure of risk, but he uses only the normal distribution of the returns. This distributional assumption has been severely criticized by Nassim Taleb [2] because of the “fat tails” problem, i.e. significant discrepancy between the normal distribution probability density and the actual probability density. Modeling the “fat tails” of the returns, particularly the usage of alternate distributions, has been researched by Aparicio and Estrada [3], Linden [4], Nayman [5]. Those authors proved the advantages of the Student’s t and the Laplace distributions over the normal distribution using the Pearson’s and Kolmogorov-Smirnov goodness of fit tests. A natural follow-up of their works would be a research dedicated to the usage of these distributions for risk measurement and estimation of VaR.
Objectives of the research. Our goal is the improvement of the VaR estimation quality by using the distributions that model “fat tails” better. The objectives of this research are: 1) to derive the VaR formulas for the Student’s t and the Laplace distribution, 2) to define the measure of VaR estimation quality, 3) to check the quality of VaR estimates derived by using different distribution of the returns based on actual market data samples.
VaR Formula for the Log-Normal Distribution 
The usage of the normal distribution of the logarithm of returns (which is equivalent to the log-normal distribution of the actual returns) for the long time has been a de facto standard in finance. However, the criticism by Nassim Taleb [2] and the recent financial crises like the Long Term Capital Management bankruptcy in 1998 and the crisis of 2008-2009 made practitioners to challenge the assumption of normality of the returns distribution. The fact that the normal distribution results in 1000 times underestimation of the probability in the tails, thus effectively giving an inadequate estimation of the risk of experiencing the extreme losses, was highlighted in [5]. The same research shows how to use the Student’s t distribution and the Laplace distribution to improve the quality of modeling the returns distribution, especially in its tails. It also gives a reasonable basis for switching to those distributions in risk measurement and VaR estimation.
Before deriving the VaR formulas, let’s reconsider the assumptions that are typically made when defining this measure. Jorion [1] for VaR measurement defines the loss as the difference between the initial portfolio values and the expectation of its final value. On the other hand, the majority of researchers, as well as the financial reporting standards and the practice of taxation, uses a different definition of the loss — the loss is defined at the difference between the initial portfolio value and its final value. Since the final value is uncertain, i.e. it’s a random variable, the loss is also a random variable. The second important assumption is that we model not the distribution of the actual return, but the distribution of its logarithm. In order to get back to VaR we need to make a reverse transition from the logarithm of return to the return itself.
Given all the assumptions we have made in the previous paragraph, let’s denote the initial portfolio value as 
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 and its final value as 
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 , then the loss will be defined as 
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 denote the return, then the loss can be expressed as 
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. Finally, let’s express the logarithm of the return as 
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, and y will be our random variable for which we will denote the expected value, the standard deviation, and the c.d.f. (which is the c.d.f. of the normal distribution) respectively as 
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Let’s use variable 
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 to denote VaR with given probability 
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 and also introduce the relative measure, a VaR multiple,
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where
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 is the loss,
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 is the absolute VaR with probability 
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 is the relative VaR with probabilty 
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 (the VaR multiple),
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 is the return,
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 is the logarithm of 1 + r,
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 is the expected value of y,
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 is the standard deviation of y,
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 is the c.d.f. for a standardized distribution (e.g. standard normal distribution).

After doing some algebraic transformations, we can derive the formula for the  VaR multiple:
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VaR Formula for the Student’s t Distribution
The formula above could be used for any distribution of the return that is fully defined with two parameters. But for the Student’s t distribution, which for any given degrees of freedom df is fully defined with two parameters, we need to remember that its scale parameter isn’t actually equal to the standard deviation. The scale parameter is equal to 
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, therefore if we express the c.d.f. of the standardized Student’s t distribution as t, the formula (1) could be re-written for this distribution as
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where
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 is the degrees of freedom for the Student’s t distribution,


t is the c.d.f. for the Student’s t distribution with df degrees of freedom.

Please note that the choice of the degrees of freedom isn’t theoretically substantiated, and typically is determined empirically. Most researchers use from 3 to 6 degrees of freedom for modeling daily returns, and based on the author’s experience the best VaR estimates are derived with 3 degrees of freedom.

VaR Formula for the Laplace Distribution
The Laplace distribution is known for a very simple c.d.f. formula, and for the practically reasonable case of 
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 formula (1) can be re-written as
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where
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 is the parameter of scale for the Laplace distribution. 

When using the Laplace distribution, 
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 is typically estimated as the sample median (instead of the sample mean) and 
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 is typically estimated as the MAD (mean absolute deviation) instead of the standard deviation. Based on the author’s experience, this combination of parameters estimates gives the best quality for the returns modeling and risk measurement.
Assessing the Quality of the VaR Estimation
For assessing the quality of the VaR estimation we will investigate the estimation error on the sample of actual market assets. The absolute error is calculated as the difference between the VaR calculated with formulas (1)-(3) and the actual sample VaR measured using the daily returns. The relative error is calculated as the absolute error divided by the actual sample VaR. However, when using the sample of assets we are unable to use the mean error, because positive and negative error would compensate one another, and hence it’s necessary to use the root mean squared error (RMSE) as the indicator of the VaR estimation quality.

VaR estimates were calculated using the daily market quotes for 20 years (1991 to 2010) for individual stocks and 40 years (1971 to 2010) for market indices. For example, for Dow Jones we used a sample of 10,349 daily returns (the sample mean 0.0258%, the standard deviation 1.0846%, the sample median 0.0367%, MAD 0.7430%), for this sample the actual VaR with probability 5%, 1%, and 0.1% were 1.59%, 2.47% and 3.27% respectively. With (1) we derived the following VaR 5%, 1%, and 0.1% estimates using the normal distribution: 1.74%, 2.47%, and 3.27% respectively. The absolute error of VaR 5% estimation is therefore 0.15%, and the relative error is 0.15% / 1.59% = 0.0929 = 9.29%. With (2) we derived the following VaR 5%, 1%, and 0.1% estimates using the Student’s t distribution with 3 degrees of freedom: 1.44%, 2.78%, and 6.17% respectively. Using formula (3) for the Laplace distribution gives the following estimates for VaR 5%, 1%, and 0.1%: 1.66%, 2.83%, and 4.48% respectively.
Table 1 summarizes the absolute errors of VaR estimation for the selected assets on the U.S. market, and also the RMSE on the full sample that includes 42 assets. As we can see, in the tails of the distribution (probability 1% and 0.1%) the normal distribution leads to significantly worse VaR estimates than the Student’s t and the Laplace distributions. For those probabilities the Student’s t distribution appears to be the most adequate. However, for VaR 5% this distribution underestimates risk, and the Laplace distribution gives better risk estimates.

Table 1. The absolute errors of VaR estimation on the U.S. market
	Distribution
	Normal
	Student’s t (df = 3)
	Laplace

	VaR @
	5%
	1%
	0.1%
	5%
	1%
	0.1%
	5%
	1%
	0.1%

	Dow Jones
	0.15%
	-0.24%
	-3.39%
	-0.16%
	0.07%
	-0.48%
	0.07%
	0.12%
	-2.18%

	S&P 500
	0.15%
	-0.39%
	-3.14%
	-0.16%
	-0.08%
	-0.24%
	0.04%
	-0.07%
	-1.99%

	Apple
	0.61%
	-0.72%
	-8.47%
	-0.27%
	0.16%
	-0.63%
	0.45%
	0.35%
	-5.12%

	Boeing
	0.22%
	-0.88%
	-4.44%
	-0.34%
	-0.32%
	0.68%
	0.23%
	0.00%
	-1.96%

	Ford
	0.52%
	-0.41%
	-8.84%
	-0.21%
	0.33%
	-2.20%
	0.36%
	0.46%
	-6.05%

	General Electric
	0.32%
	-1.18%
	-5.26%
	-0.21%
	-0.65%
	-0.39%
	0.20%
	-0.55%
	-3.24%

	Coca-Cola
	0.11%
	-0.45%
	-4.06%
	-0.32%
	-0.01%
	-0.05%
	0.13%
	0.25%
	-2.13%

	Nike
	0.36%
	-0.99%
	-4.71%
	-0.25%
	-0.38%
	0.84%
	0.31%
	-0.15%
	-2.22%

	Exxon Mobil
	0.13%
	-0.56%
	-3.94%
	-0.31%
	-0.12%
	0.12%
	0.15%
	0.16%
	-1.96%

	RMSE
	0.47%
	1.65%
	8.18%
	0.39%
	1.05%
	3.14%
	0.23%
	1.27%
	6.26%


Table 2 summarizes the absolute errors of VaR estimation and RMSE for 6 assets on Russian market. The results are quite similar to the ones for the U.S. market — the Student’s t distribution gives the best quality for VaR 1% and 0.1% estimation, whereas for VaR 5% the Laplace distribution is better.
Table 2. The absolute errors of VaR estimation on Russian market
	Distribution
	Normal
	Student’s t (df = 3)
	Laplace

	VaR @
	5%
	1%
	0.1%
	5%
	1%
	0.1%
	5%
	1%
	0.1%

	Індекс РТС
	0.45%
	-0.99%
	-6.80%
	-0.31%
	-0.23%
	0.02%
	0.31%
	-0.10%
	-3.98%

	Газпром
	0.31%
	-2.99%
	-13.80%
	-0.76%
	-1.92%
	-4.44%
	-0.29%
	-2.27%
	-10.60%

	Сбербанк
	1.70%
	-4.25%
	-30.46%
	0.36%
	-2.92%
	-19.10%
	0.04%
	-4.81%
	-28.70%

	Лукойл
	0.54%
	-3.04%
	-11.07%
	-0.45%
	-2.05%
	-2.34%
	0.00%
	-2.31%
	-7.97%

	Новатэк
	0.98%
	-3.79%
	-23.99%
	-0.44%
	-2.39%
	-12.09%
	-0.06%
	-3.23%
	-20.41%

	ВТБ
	1.44%
	-13.91%
	-14.89%
	-0.34%
	-12.20%
	-0.67%
	-0.93%
	-14.88%
	-12.93%

	RMSE
	1.04%
	6.39%
	18.64%
	0.47%
	5.34%
	9.46%
	0.42%
	6.65%
	16.33%


The absolute errors provided in Tables 1 and 2 are important, because they show the underestimation or overestimation of risk, but they fail to show how large that under- or overestimation is compared to the actual VaR. For the latter it’s better to use the relative errors, which are summarized in Table 3. As we can see from it, the underestimation of risk for probability 0.1% is almost two times when using the normal distribution; however it could be significantly reduced by using the Student’s t distribution. At the same time, the underestimation for VaR at 5% is not so critical, it’s only about 15% for the normal distribution, and using the Laplace distribution we could reduce it to just 5.5%-7%.
Table 3. The relative errors of VaR estimation for different distributions
	Distribution
	Normal
	Student’s t (df = 3)
	Laplace

	VaR @
	5%
	1%
	0.1%
	5%
	1%
	0.1%
	5%
	1%
	0.1%

	U.S. market
	15.0%
	19.0%
	48.6%
	11.2%
	11.3%
	20.2%
	7.0%
	13.9%
	34.7%

	Russian market
	15.4%
	29.6%
	54.5%
	7.9%
	22.4%
	23.1%
	5.5%
	28.6%
	44.8%


Conclusions
The usage of the normal distribution leads to the underestimation of risk and VaR, because the distributions of the actual returns have significantly fatter tails than the normal distribution. However, this problem could be mitigated by using the “fat tails” distributions, such as the Student’s t and the Laplace distribution. The comparison of the VaR estimates calculated using those distributions and the estimates calculated using the normal distribution shows that VaR 5% is the best estimated by using the Laplace distribution, but for VaR 1% and 0.1% the most accurate estimates are derived using the Student’s t distribution with 3 degrees of freedom.
The results of this research can be practically used for improving the accuracy of risk measurement when managing portfolios of securities or analyzing the financial stability of banks. Further research in this area can be focused on the development of risk management methods using the “fat tailed” distributions, as well as on researching and adapting to their dynamic characteristics, for example, using back testing methodology. Also, a very promising direction of research in this area would be switching from the plain VaR to the conditional cVaR or the expected loss over VaR.
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